
PANEL implementation

Authors: Nandhini Rajagopal and Shikha Nangia, Syracuse University

Prerequisite:

1. In addition to standard python packages such as numpy, scipy, pandas, matplotlib,

please make sure to install MDAnalysis package.

2. The scripts are written to suit python2.7 and Gromacs versions above 5.

3. The CG Martini forcefield is used for all simulations.

Prep:

1. Please extract the files from PANEL.tar.gz

2. Add the PANEL folder to your path.

3. Obtain CG protein structure using martinize.py

Computing ds

P_sep.py

For homomeric PANEL,

Inputs: protein gro/pdb file in CG

Input path to file when prompted

Example '/home/user/PANEL/prot1.pdb'

Run:

./P_sep.py

Output: D90 Å

(90th percentile. The percentile value can be edited in the code,

line 23: np.percentile(D, 90))

Obtain ds value:

ds = 2D90 + 2 Å

For heteromeric PANEL,

Inputs: proteinA and protein_B gro file in CG, number of beads in each protein

Run dsep.py separately with each of the protein gro/pdb file path edited.

ds = DA
90 + DB

90 + 2 Å

https://www.mdanalysis.org/
http://cgmartini.nl/
http://cgmartini.nl/index.php/tools2/proteins-and-bilayers

Generating uniformly distributed geometries

P_setup.py

(Prep:

Make sure to center the protein using editconf before generating initial geometries

Before running P_setup.py, it is recommended to test the rand_geom.py code, which is called

from within the P_setup.py for generating fewer geometries to make sure everything is working

fine. This is because P_setup.py may take a couple hours to finish and it is better to run it after

checking the geometries generated are placed well in the membrane.

Before using rand_geom.py, please change the lines 590, 591 and 592 to point to the path of

your martini forcefield libraries. These paths will be writing on the topology files.

 echo '#include "/home/user/local/lib/martini_v2.2.itp"'

 echo '#include "/home/user/local/lib/martini_v2.0_lipids.itp"'

 echo '#include "/home/user/local/lib/martini_v2.0_ions.itp"'

If you have the include statements already in your prot1_CG.top (and prot2_CG.top in case of

hetero), then you remove these lines and proceed.

You may use the sample command line below to perform test run.

For homomers:

rand_geom.sh -cg test=prot1.pdb,prot1.top -c 2 -c 2! -dsep ds_value -n 5 --insane{-

pbc=rectangular,-l=DOPC:2,-l=DPPC:2,-l=CHOL:1,-sol=W:9,-sol=WF:1,-salt=0.15,-x=10,-y=10,-

z=9,-center}

For heteromers:

rand_geom.sh -cg testA=prot1.pdb,prot1.top -cg testB=prot2.pdb,prot2.top -c 2! -dsep ds_value

-n 5 --insane{-pbc=rectangular,-l=DOPC:2,-l=DPPC:2,-l=CHOL:1,-sol=W:9,-sol=WF:1,-

salt=0.15,-x=10,-y=10,-z=9,-center}

Sometimes the proteins may not sit correctly in the membrane, in which case you might have to

reorient the position of the proteins using gmx editconf and try again.)

Inputs:

- Input parameters that need to be mandatorily provided will be prompted while running

the code, such as “path (path)”, “Number of CG beads in each of the proteins (anum1,

anum2)”, “Reference group residues for defining zero angle in rotational space (ref1,

ref2)” . In our work with claudin-5, the zero angle residues were chosen from the TM1.

(please refer to the paper-SI for rotational angle schematic), “Initial separation distance

(ds)”, “pdb and top file names of the proteins (P1_pdb, P1_top, P2_pdb, P2_top)”,

“Specify dimer type (dimer_type)”.

- Other parameters such as Ω bin size (gs), number of geometries per each Ω bin

(num_per_grid), number of random samples added in each iteration (add_samp), and

tolerance to stop adding more sample (tol), have already been assigned the

recommended values. We have tested these values and provided the best choice and

would suggest to use the same values. However, it is quite straightforward to adjust

these values in the beginning of the code.

t0 = time.time()

gs = 10 # recommended size of each omega bin = 10x10 degrees

num_per_grid = 2 # recommended number of geometries per omega bin = 2

grids = np.zeros((360/gs,360/gs)) # obtaining grids based on omega bin

size

add_samp = 250 # number of random samples aded in each iteration

total_samp = ((360/gs)**2)*num_per_grid # total number of geometries

added to the system uniformly

path = input('Insert path to file (within qoutes): \nSample path

"/home/user/workdir/" \n\n ')

count = 0

a = 1

b = add_samp

tol = 0.9 # seting 90% tolerance for total number of geometries generated

anum1 = int(input('Number of beads in protein-1 '))

anum2 = int(input('Number of beads in protein-2 '))

ref1 = input('Insert group of reference residues for 0 angle position for

prot1 (within quotes): \nSample "4-25" \n\n')

ref2 = input('Insert group of reference residues for 0 angle position for

prot2 (within quotes, enter the same as prot1 if homomer): \nSample "4-

25" \n\n')

ds = int(input('Enter ds value (nm): '))

dimer_type = int(input('1. Homomer 2. Heteromer \nEnter 1 or 2 to choose

dimer type '))-1

init_geom_commands = ["rand_geom.sh -cg A=prot1.pdb,prot1.top -c 2 -c 2!

-dsep "+str(ds)+" -n "+str(add_samp)+" --insane{-pbc=rectangular,-

l=DOPC:2,-l=DPPC:2,-l=CHOL:1,-sol=W:9,-sol=WF:1,-salt=0.15,-x=10,-y=10,-

z=9}","rand_geom.sh -cg A=prot1.pdb,prot1.top -cg B=prot2.pdb,prot2.top -

c 2! -dsep "+str(ds)+" -n "+str(add_samp)+" --insane{-pbc=rectangular,-

l=DOPC:2,-l=DPPC:2,-l=CHOL:1,-sol=W:9,-sol=WF:1,-salt=0.15,-x=10,-y=10,-

z=9}"] # similar command-line as daft method

file_ext = ["A-A/conf/","A-B/conf/"]

Also, please feel free to change the membrane lipid compositions in the included insane.py

commands in rand_geom.sh to suite your desired membrane setup.

Run:

./P_setup.py

(This takes a while to run and finish because of multiple iterations to obtain a uniform

distribution. There may be some “warnings: Failed to guess atom type…” displayed by the

MDAnalysis package, please disregard those. Please note down the total number of geometries

generated that is displayed at the end of the run, we will need it later in P_analysis. It looks like

shown below:

…

Grids sampled 2374.0/2592

Iteration: 15

)

grids.py can be used to generate a plot to visualize the initial geometry distribution on the

landscape.

Run MD simulations on all the geometries
Input: mdp files, run script, run_setup script, etc

- Example mdp files (em.mdp, NVT.mdp, NPT.mdp, PROD.mdp) with suggested length of

simulations, sample run script (run.sh) and example bulk job submission script

(run_setup.py) have been provided which can be edited to suit the cluster

specifications you are using.

- Make sure to change the energygrps index names on the mdp files*** (Example shown

below)

define = -DPOSRES

integrator = md

tinit = 0.0

dt = 0.020

nsteps = 1250000

nstcomm = 100

energygrps = A_A B_B Membrane Solvent

comm-grps = Solute Membrane Solvent

Set energygrps = A_A B_B Membrane Solvent for Heteromer

energygrps = A_A B_A Membrane Solvent for Homomer

Analysis

P_analysis.py

Inputs:

- The input parameters are similar to the ones prompted by P_setup.py.

- Make sure to provide the appropriate the energy group for obtaining interaction energies

using “gmx energy” in line 58 of the code. The energy group may not necessarily be “47”

depending on the gromacs version, please run the energy command for one geometry to

know the correct index number for LJ interaction between either of the proteins.

os.system("echo 47|gmx energy -f PROD.edr -s PROD.tpr -o energy.xvg")

- Reference group residues (same as in P_setup.py)

Run:

./P_analysis.py

Outputs:

- Processed trajectories

- Interaction energies over the trajectory

- Rotational angles if the two proteins over the trajectory

- Distance between the two protein over the trajectory

- Text file listing all the configurations that qualify as good geometries (described in the

paper). This text file will later be used by panel.py to generate PANEL plots.

Results

panel.py

Inputs: As prompted by the code while running.

Run:

./panel.py

Outputs:

- Minimum energy landscape

- Average energy landscape

- Population landscape

- Coverage

- Text files containing data for “minimum energies”, “average energies”, “frequencies” over

the rotational space and configurations corresponding to the minimum energies.

Plots: Min_en_grid.png, Pop_grid.png, Avg_en_grid.png, Grid_cov.png

Text data: min_en_grids.txt, max_en_grids.txt, av_en_grids.txt,

pop_grids.txt, min_conf.txt, max_conf.txt, min_snap.txt, max_snap.txt

Please feel free to make changes to the specification for generating plots or wherever you feel

necessary.

Please cite us:

Rajagopal, N.; Nangia, S. Obtaining Protein Association Energy Landscape for Integral

Membrane Proteins. Journal of Chemical Theory and Computation 2019. DOI:

10.1021/acs.jctc.9b00626

