1. Development of effective stochastic potential method using random matrix theory for efficient conformational sampling of semiconductor nanoparticles at non-zero temperatures,  J. Scher, M. Bayne, A. Srihari, S. Nangia, and A. Chakraborty, Journal of Chemical Physics, Accepted (2018).
  2. Self-assembly simulations of classic claudins–insights into the pore structure, selectivity and higher-order complexes,  F. J. Irudayanathan,  X. Wang, N. Wang, S. Willsey, I. Seddon, and S. Nangia,  Journal of Physical Chemistry B, ASAP (2018). Featured on the cover!
  3. Mechanism of Antibacterial Activity of Choline-Based Ionic Liquids (CAGE), Kelly N. Ibsen, H. Ma, A. Banerjee, E. E. L. Tanner, S. Nangia, and S. Mitragotri, ACS Biomater. Sci. Eng. ASAP (2018).
  4. Dynamics of OmpF trimer formation in the bacterial outer membrane of Escherichia coli, H. Ma, A. Khan, and S. Nangia, Langmuir, 34, 5623–5634 (2018).  Featured on the cover!
  5. Architecture of the paracellular channels formed by Claudins of the blood-brain barrier tight junctions, F. J. Irudayanathan, N. Wang, X. Wang , and S. Nangia, Annals of the New York Academy of Sciences, 1749-6632 (2017).
  6. Modeling diversity in structures of bacterial outer membrane lipids, H. Ma, D. D. Cummins, N. B. Edelstein, J. Gomez, A. Khan, M. D. Llewellyn, T. Picudella, S. R. Willsey, and S. Nangia, Journal of Chemical Theory and Computation, 13, 811–824 (2017).
  7. Drug-specific design of telodendrimer architecture for effective Doxorubicin encapsulation, W. Jiang, X. Wang, D. Guo, J. Luo, and S. Nangia, Journal of Physical Chemistry B, 120, 9766–9777 (2016).
  8. Molecular architecture of the blood-brain barrier tight junction proteins–A Synergistic Computational and in vitro Approach, F. J. Irudayanathan, J. P. Trasatti, P. Karande, and S. Nangia, Journal of Physical Chemistry B, 120, 77-88 (2016).
  9. Combinatorial approaches to evaluate nanodiamonds uptake and induced cellular fate, R. Eldawud, M. Reitzig, J. Opitz, Y. Rojanasakul, W. Jiang, S. Nangia, and C. Dinu, Nanotechnology, 27 (2016).
  10. Simulating gram-negative bacterial outer membrane: A coarse grain model, H. Ma, F. J. Irudayanathan, W. Jiang, and S. Nangia, Journal of Physical Chemistry B, 119, 14668–14682 (2015). Featured on the cover!
  11. Signaling factor interactions with polysaccharide aggregates of bacterial biofilms, S. C. DeSalvo, Y. Liu, G. Choudhary, D. Ren, S. Nangia, and R. Sureshkumar, Langmuir, 31, 1958-1966 (2015).
  12. Multiscale approach to investigate self-assembly of telodendrimer based nanocarriers for anticancer drug-delivery, W. Jiang, J. Luo, and S. Nangia, Langmuir, 31, 4270-4280 (2015).
  13. Optical signature of formation of protein corona in the firefly luciferase-CdSe quantum dot complex, J.M. Elward, F.J. Irudayanathan, S. Nangia, and A. Chakraborty, Journal of Chemical Theory and Computation, 10, 5534-5524 (2014). Featured on the cover of JCTC!
  14. A structure–property relationship study of the well-dfined telodendrimers to improve hemocompatibility of nanocarriers for anticancer drug delivery, C. Shi, D. Yuan , S. Nangia, G. Xu, K. Lam, and J. Luo, Langmuir, 28, 17666–17671 (2014).
  15. Effects of nanoparticle charge and shape anisotropy on translocation through cell membranes, S. Nangia and R. Sureshkumar, Langmuir, 28, 17666–17671 (2012). Featured on the cover of Langmuir!
  16. Theoretical advances in the dissolution studies of mineral-water interfaces, S. Nangia and B. J. Garrison, Thoeretical Chemistry Accounts, 127, 271-284 (2010). Invited feature Article.
  17. Role of intrasurface hydrogen bonding on silica dissolution, S. Nangia and B. J. Garrison, J. Phys. Chem. C 114, 2267-2272 (2010).
  18. Advanced Monte Carlo approach to study evolution of quartz surface during the dissolution process, S. Nangia and B. J. Garrison, J. Am. Chem. Soc. 131, 9538-9546 (2009).
  19. Ab-initio study of dissolution and precipitation reaction from edge, kink, and surface sites of quartz as a function of pH, S. Nangia and B. J. Garrison, Mol. Phys. 107 , 831-843 (2009).
  20. Ab Initio investigation of dissolution mechanisms in aluminosilicate minerals, C. P. Morrow, S. Nangia and B. J. Garrison, J. Phys. Chem. A 113, 1343-1352 (2009).
  21. Reaction rates and dissolution mechanisms of quartz as a function of pH, S. Nangia and B. J. Garrison, J. Phys. Chem. A 112, 2027-2033 (2008).
  22. Study of a family of 40 hydroxylated beta-cristobalite surfaces using empirical potential energy functions, S. Nangia, N. M. Washton, K. T. Mueller, J. D. Kubicki, and B. J. Garrison, J. Phys. Chem. C 111, 5169-5177 (2007).
  23. Direct calculation of coupled diabatic potential-energy surfaces for ammonia and mapping of a four-dimensional conical intersection seam, S. Nangia and D. G. Truhlar, J. Chem. Phys. 124, 124309-13 (2006).
  24. Non-Born-Oppenheimer molecular dynamics, A. W. Jasper, S. Nangia, CY. Zhu, and D. G. Truhlar, Acc. Chem. Res. 39, 101-108 (2006).
  25. A new form of MgTa2O6 obtained by the molten salt method, A. K. Ganguly, S. Nangia, M. Thirumal, and P. L. Gai, J. Chem. Sci. 118, 37-42 (2006).
  26. Can a single-reference approach provide a balanced description of ground and excited states? A comparison of the completely renormalized equation-of-motion coupled-cluster method with multireference quasidegenerate perturbation theory near a conical intersection and along a photodissociation coordinate in ammonia, S. Nangia and D. G. Truhlar, M. J. McGuire, and P. Piecuch, J. Phys. Chem A 109, 11643-11646 (2005).
  27. Introductory lecture: Nonadiabatic effects in chemical dynamics, A. W. Jasper, CY. Zhu, S. Nangia, and D. G. Truhlar, Faraday Discus. 127, 1-22 (2004).
  28. Coherent switching with decay of mixing: An improved treatment of electronic coherence for non-Born-Oppenheimer trajectories, CY. Zhu, S. Nangia, A. W. Jasper, and D. G. Truhlar, J. Chem. Phys. 121, 7658-7670 (2004).
  29. Army ants algorithm for rare event sampling of delocalized nonadiabatic transitions by trajectory surface hopping and the estimation of sampling errors by the bootstrap method, S. Nangia, A. W. Jasper, T. F. Miller III, and D. G. Truhlar, J. Chem. Phys. 120, 3586-3597 (2004).